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Large-eddy simulation of the turbulent flow
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Large-eddy simulations of a compressible turbulent square duct flow at low Mach
number are described. First, we consider the isothermal case with all the walls at
the same temperature: good agreement with previous incompressible DNS and LES
results is obtained both for the statistical quantities and for the turbulent structures.
A heated duct with a higher temperature prescribed at one wall is then considered
and the intensity of the heating is varied widely. The increase of the viscosity with
temperature in the vicinity of the heated wall turns out to play a major rôle. We
observe an amplification of the near-wall secondary flows, a decrease of the turbulent
fluctuations in the near-wall region and, conversely, their enhancement in the outer
wall region. The increase of the viscous thickness with heating implies a significant
augmentation of the size of the characteristic flow structures such as the low- and
high-speed streaks, the ejections and the quasi-longitudinal vorticity structures. For
strong enough heating, the size limitation imposed by the lateral walls leads to a single
low-speed streak located near the duct central plane surrounded by two high-speed
streaks on both sides. Violent ejections of slow and hot fluid from the heated wall are
observed, linked with the central low-speed streak. A selective statistical sampling of
the most violent ejection events reveals that the entrainment of cold fluid, originated
from the duct core, at the base of the ejection and its subsequent expansion amplifies
the ejection intensity.

1. Introduction
The turbulent flow inside a duct of square or rectangular cross-section is of con-

siderable engineering interest. This flow is characterized by the existence of secondary
flows (Prandtl’s flow of the second kind) which are driven by the turbulent motion.
The secondary flow is a mean flow perpendicular to the main flow direction. It is
relatively weak (1–3% of the mean streamwise velocity), but its effect on the transport
of heat and momentum is quite significant.

There is still much controversy about the relation between the secondary flow
and the ejection mechanism from the wall. Many studies based upon the mean
streamwise vorticity equation have shown that this secondary flow is generated by
a balance between the secondary Reynolds stress gradients (Demuren & Rodi 1984;
Brundet & Baines 1964; Gessner & Jones 1965; Gessner 1983). This generation has
been investigated in detail by Huser & Biringen (1993) through a direct numerical
simulation (DNS) of a square duct. They have found that the dominant turbulent
mechanism is ejections from the wall. The frequency and intensity of these ejections
vary significantly with the distance from the duct corner. Close to the corner, the
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weak shear inhibits the ejections while, close to the middle of each wall, the strong
shear enhances the ejection mechanism. This generates a secondary flow directed from
the core of the duct toward the corners and promotes the distortion of the streamwise
isolines. This motion yields an anisotropic Reynolds stress distribution.

The aim of the present study is to investigate through large-eddy simulations (LES)
the effects of an asymmetric heat flux in the square duct flow. First, our numerical
procedure is validated by performing an isothermal duct LES with the four walls at the
same temperature and by comparing our results with previous incompressible DNS
results by Gavrilakis (1992). A second step is a comparison between the isothermal
duct and a heated duct where the temperature of one of the walls is higher than the
temperature of the other three walls. Sections 2 and 3 describe the numerical scheme
used to discretize the three-dimensional compressible Navier–Stokes equations, the
compressible LES formalism and our subgrid-scale model. The following section (§ 4)
presents the computational details and defines the main statistical quantities used
throughout the paper. Detailed comparisons with previous DNS and LES results for
the isothermal duct are presented in § 5. This section also includes a detailed study
of the anisotropy of the duct turbulent flow. Finally, §§ 6 and 7 focus on the heated
duct dynamics. Several heating intensities are considered and we investigate in detail
the modifications of both statistical quantities and three-dimensional flow structures.

2. Governing equations and numerical scheme
2.1. Governing equations

In a Cartesian frame of reference, x, y, z, the compressible Navier–Stokes equations
can be written in the so-called fast-conservation form, details of which can be found
in Ducros, Comte & Lesieur (1996):

∂U

∂t
+
∂F i

∂xi
= S . (2.1)

U is a five component vector defined by

U = T (ρ, ρu1, ρu2, ρu3, ρe). (2.2)

Here u = (u1, u2, u3) is the velocity vector, ρ is the density. In this article, we will
also write u = (u, v, w). Equation (2.1) represents the evolution of density (continuity
equation), momentum, and total energy defined for an ideal gas by

ρe = ρCvT + 1
2
ρ(u2

1 + u2
2 + u2

3). (2.3)

F i are fluxes where ∀i ∈ {1, 2, 3}, and for a Newtonian fluid are given by

F i =


ρui
ρuiu1 + pδi1 − 2µSi1
ρuiu2 + pδi2 − 2µSi2
ρuiu3 + pδi3 − 2µSi3
(ρe+ p)ui − 2µujSij − k ∂T/∂xi

 , (2.4)

k = ρCpκ being the thermal conductivity and κ the thermal diffusivity. δij is Kro-
necker’s indice and Sij is the deviatoric part of the deformation tensor. Neglecting
bulk viscosity, Sij is written

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
(∇ · u)δij

)
. (2.5)
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Molecular viscosity is prescribed through the Sutherland empirical law

µ(T ) = µ(Tref )

(
T

Tref

)1/2
1 + S/Tref

1 + S/T
, (2.6)

where S , Tref and µ(Tref ) are functions of the gas. The conductivity k(T ) is obtained
assuming the molecular Prandtl number is

Pr =
ν

κ
=
Cpµ(T )

k(T )
, (2.7)

here taken equal to 0.7. The classical equation of state for ideal gas relating the static
pressure p, the temperature T and the density ρ,

p = RρT , (2.8)

closes the system, with R = Cp − Cv . We recall also that γ = Cp/Cv is constant.
For the duct flow, the matrix S in equation (2.1) is given by S = (0, f(t), 0, 0, Ubf(t))T .

The uniform body force f(t) which is a function of time has to be introduced in order
to impose a constant mass flux in the streamwise direction x. This forcing term
appears both in the streamwise momentum equation and in the energy equation.
Indeed, to be consistent with the momentum equation, a forcing term f(t)u1 arises
in the energy equation. For stability reasons, the local velocity, u1 is replaced here
by the bulk velocity Ub (see § 4.2 for a definition). Note that this forcing term is
equivalent to the imposition of a mean streamwise pressure gradient and constitutes
a convenient and customary way to numerically achieve streamwise homogeneity (see
e.g. Coleman, Kim & Moser 1995).

3. Large-eddy simulation
The LES technique consists in trying to deterministically simulate only the large

scales of the flow: the small scales are then filtered out, but statistically influence
the large-scale motion (see Métais & Lesieur 1996 for details). The LES equations
are found by applying a low-pass spatial filter G∆(x) of size ∆ to the Navier–Stokes
equations. This eliminates the scales smaller than the filter size ∆ called the sub-grid
scales. Mathematically, the filtering operation corresponds to the convolution of any
quantity f(x, t) of the flow by the filter function G∆(x), in the form

f̄(x, t) =

∫
f(y, t)G∆(x− y) dy, (3.1)

and the subgrid-scale field is the departure of the actual flow with respect to the
filtered field:

f = f̄ + f′. (3.2)

The compressible LES formalism has been described in detail by Comte & Lesieur
(1997).

The application of the filter to the compressible Navier–Stokes equations yields

∂Ū

∂t
+
∂F̄ 1

∂x1

+
∂F̄ 2

∂x2

+
∂F̄ 3

∂x3

= 0, (3.3)

with

ρe = ρ cv T + 1
2
ρ(u2

1 + u2
2 + u2

3) (3.4)
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and

p = ρRT . (3.5)

To derive a formalism as close as possible to the incompressible formalism, it is usual
in statistical turbulence modelling and in LES to introduce density-weighted or Favre
averaging (see Favre 1965). We denote by f̃ the density-weighted filtering of f, defined
as

f̃ =
ρf

f̄
. (3.6)

We then have

Ū = T (ρ̄, ρ̄ũ1, ρ̄ũ2, ρ̄ũ3, ρ̄ẽ), (3.7)

and the resolved total energy is written

ρe = ρ̄ẽ = ρ̄CvT̃ + 1
2
ρ(u2

1 + u2
2 + u2

3). (3.8)

The resolved fluxes F̄ i are

F̄ i =



ρ̄ũi

ρuiu1 + p̄δi1 − 2µSi1

ρuiu2 + p̄δi2 − 2µSi2

ρuiu3 + p̄δi3 − 2µSi3

(ρe+ p)ui − 2µSijuj − k∂T/∂xi

 , (3.9)

with the filtered equation of state

p̄ = ρ̄RT̃ . (3.10)

We now introduce the usual subgrid-stress tensor T̄ with components

Tij = −ρuiuj + ρ̄ũiũj , (3.11)

which we split into its isotropic and deviatoric parts, the latter being denoted τ̄:

Tij =Tij − 1
3
Tllδij︸ ︷︷ ︸

τij

+ 1
3
Tllδij . (3.12)

Equations (3.9) and (3.8) then read

F̄ i =



ρ̄ũi

ρ̄ũiũ1 + (p̄− 1
3
Tll)δi1 − τi1 − 2µSi1

ρ̄ũiũ2 + (p̄− 1
3
Tll)δi2 − τi2 − 2µSi2

ρ̄ũiũ3 + (p̄− 1
3
Tll)δi3 − τi3 − 2µSi3

(ρe+ p)ui − 2µSijuj − k∂T/∂xi

 (3.13)

and

ρ̄ẽ = ρ̄CvT̃ + 1
2
ρ̄(ũ1

2 + ũ2
2 + ũ3

2)− 1
2
Tll . (3.14)

An elegant formulation has been proposed by Comte & Lesieur (1997) through
the introduction of a macro-pressure and a macro-temperature. The macro-pressure is
defined as

$ = p̄− 1
3
Tll . (3.15)
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and the macro-temperature

ϑ = T̃ − 1

2Cvρ̄
Tll . (3.16)

The filtered equation of state (3.10) can then be written as

$ = ρ̄Rϑ+
3γ − 5

6
Tll . (3.17)

The major advantage of this formulation is that we may derive a closed system
of equations in which the unknown trace Tll of the subgrid-scale tensor no longer
explicitly appears. Indeed, it can be shown that the resolved total energy is written

ρ̄ẽ = ρ̄Cvϑ+ 1
2
ρ̄(ũ1

2 + ũ2
2 + ũ3

2). (3.18)

Furthermore, for γ = 1.4, it was shown by Comte & Lesieur (1997) that it is fully
justified to neglect the second term of the right-hand side of equation (3.17). We can
then write

$ ' ρ̄Rϑ. (3.19)

This makes $ computable if ρ̄ and ϑ are known.
We next need to introduce the subgrid heat-flux vector, denoted Q, with components

Qi = −(ρe+ p)ui + (ρ̄ẽ+ $)ũi. (3.20)

The exact expression for the filtered fluxes then becomes

F̄ i =


ρ̄ũi

ρ̄ũiũ1 + $δi1 − τi1 − 2µSi1

ρ̄ũiũ2 + $δi2 − τi2 − 2µSi2

ρ̄ũiũ3 + $δi3 − τi3 − 2µSi3

(ρ̄ẽ+ $)ũi − Qi − 2µSijuj − k∂T/∂xi

 . (3.21)

3.1. Sub-grid model

The system described above may be closed by making use of the usual variable-density
eddy-viscosity and diffusivity models, in the form

τij ' ρ̄νtS̃ij , (3.22)

Qi ' ρ̄Cp νt
P rt

∂ϑ

∂xi
. (3.23)

The remaining non-computable terms are molecular viscous and diffusive terms,
which can be considered of less importance when the Reynolds number is sufficiently
large. We therefore simply replace (3.21) by

F̄ i '


ρ̄ũi

ρ̄ũiũ1 + $δi1 − 2(µ̄+ ρ̄νt)S̃i1

ρ̄ũiũ2 + $δi2 − 2(µ̄+ ρ̄νt)S̃i2

ρ̄ũiũ3 + $δi3 − 2(µ̄+ ρ̄νt)S̃i3

(ρ̄ẽ+ $)ũi − 2(µ̄+ ρ̄νt)S̃ij ũj − [k̄ + ρ̄Cpνt/P rt] ∂ϑ/∂xi

 , (3.24)

in which µ̄ and k̄ are linked to ϑ through the Sutherland relation (2.6), a constant
molecular Prandtl number Pr = Cpµ̄(ϑ)/k̄(ϑ) = 0.7 being assumed. Note that one
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of the remarkable aspects of this formulation is that the LES system can be easily
deduced from the original compressible Navier–Stokes equations by the following
changes:

ui → ũi, ρ→ ρ̄, T → ϑ, p→ $, e→ ẽ, µ→ µ̄+ ρ̄νt, k → k̄ + ρ̄Cp
νt

P rt
.

This renders the numerical code easily usable both for DNS and for LES without
severe modifications.

Expressions for νt and Prt used in the following compressible simulations corre-
spond to the incompressible models described in Métais & Lesieur (1996), the only
difference being that here νt is deduced from the density-weighted filtered velocity
field ũ. Our subgrid-scale model is the selective structure function model proposed
by David (1993) (see also Métais & Lesieur 1996), the local eddy viscosity, νt(x, t), is
then given by

νt(x,∆, t) = Cssf ∆

√
F̃2(x,∆, t) (3.25)

where Cssf can be expressed as a function of the Kolmogorov constant CK: Cssf =

f(C
−3/2
K ) (see David 1993). Cssf takes the value 0.104 for CK = 1.4. ∆ is taken equal

to (∆x∆y∆z)1/3, where ∆x, ∆y and ∆z are the local grid sizes in the three spatial
directions.

F̃2(x,∆, t) is the second-order velocity stucture function constructed with the field

ũ. F̃2 is calculated at point x with a local statistical average of square (Favre-
filtered) velocity differences between x and the six closest points surrounding x on
the computational grid. Interpolation based upon Kolmogorov’s 2/3 law for the
velocity structure function is used. As proposed by David (1993), the eddy viscosity
is switched off when the flow is not three-dimensional enough. The criterion for
three-dimensionality is defined as follows: consider at a given time the angle between
the vorticity vector at a given grid point and the arithmetic mean of vorticity vectors
at the six closest neighbouring points. The eddy viscosity is cancelled at points where
this angle is smaller than 20◦. Finally, the turbulent Prandtl number is taken equal to
0.6.

3.2. Equations in generalized coordinates

The numerical code uses generalized coordinates. The adaptation to generalized
coordinates is made by introducing a Jacobian matrix, which transforms a complex
geometry in the Cartesian coordinate system (x, y, z), such as a non-uniform grid
or a curvilinear geometry, into a simple orthogonal geometry with uniform grid in
the generalized coordinate system (ξ1, ξ2, ξ3) where the equations can be more easily
solved. For the straight duct, it simply consists in a transformation of a non-uniform
grid in the physical space (x, y, z) into a uniform grid in the computational space
(ξ1, ξ2, ξ3). Every term in the inverse Jacobian matrix (J−1) is expressed as an analytic
function of the metrics ∂xi/∂ξj . The metrics are computed and calculated by the
first-order internal scheme, then the matrix (J) is directly computed from J−1 (see
Fletcher 1988 for more details).

We can then rewrite the equation (2.1) (or the LES equation (3.3)) as

∂Û

∂t
+
∂F̂

∂ξ1

+
∂Ĝ

∂ξ2

+
∂Ĥ

∂ξ3

= Ŝ (3.26)
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with

Û = U/J,

F̂ =
1

J

[(
∂ξ1

∂x1

F

)
+

(
∂ξ1

∂x2

G

)
+

(
∂ξ1

∂x3

H

)]
,

Ĝ =
1

J

[(
∂ξ2

∂x1

F

)
+

(
∂ξ2

∂x2

G

)
+

(
∂ξ2

∂x3

H

)]
,

Ĥ =
1

J

[(
∂ξ3

∂x1

F

)
+

(
∂ξ3

∂x2

G

)
+

(
∂ξ3

∂x3

H

)]
,

Ŝ =
1

J
S .



(3.27)

J is the determinant of the matrix (J) and U is function of the Cartesian coordinates
and time.

3.3. Numerical scheme

The system in generalized coordinates is solved by means of an extension of the fully
explicit McCormack scheme, second order in time and fourth order in space, devised
by Gottlieb & Turkel (1976). Note that we use U in the following formula. It has to
be replaced by Ū defined by (3.7) when LES are considered. The numerical scheme
is a corrector–predictor scheme defined in one dimension by

predictor

U
(1)
j = U

(n)
j + 1

6
λ(−f(n)

j+2 + 8f(n)
j+1 − 7f(n)

j ) + (δt)S (n)
j , (3.28)

corrector

U
(n+1)
j = 1

2
(U(n)

j + (Uj)
(1)) + 1

12
λ(7f(1)

j−2 − 8f(1)
j−1 + f

(1)
j ) + 1

2
(δt)S (1)

j . (3.29)

The indices (n), (n + 1) and (1) stand respectively for the values of the function
at time t, time t + δt and at the sub-time-step. Note that the intermediate spatial
discretizations are non-centred first-order schemes with a forward-predictor and a
backward-corrector. As specified above, the resulting scheme is fourth order in space.
The three-dimensional, generalized formulation is written (see Salinas-Vázquez &
Métais 1999)

predictor

U1
i,j,k = Un

i,j,k − JPi,j,k
[

∆t

∆ξ1

[ 7
6
(F̂ni+1,j,k − F̂ni,j,k)− 1

6
(F̂ni+2,j,k − F̂ni+1,j,k)]

+
∆t

∆ξ2

[ 7
6
(Ĝni+1,j,k − Ĝni,j,k)− 1

6
(Ĝni+2,j,k − Ĝni+1,j,k)]

+
∆t

∆ξ3

[ 7
6
(Ĝni+1,j,k − Ĝni,j,k)− 1

6
(Ĝni+2,j,k − Ĝni+1,j,k)]

]
(3.30)

corrector

Un+1
i,j,k = 1

2
[U1

i,j,k +Un
i,j,k]− 1

2
JCi,j,k

[
∆t

∆ξ1

[ 7
6
(F̂1

i,j,k − F̂1
i−1,j,k)− 1

6
(F̂1

i−1,j,k − F̂1
i−2,j,k)]

+
∆t

∆ξ2

[ 7
6
(Ĝ1

i,j,k − Ĝ1
i−1,j,k)− 1

6
(Ĝ1

i−1,j,k − Ĝ1
i−2,j,k)]

+
∆t

∆ξ3

[ 7
6
(Ĝ1

i,j,k − Ĝ1
i−1,j,k)− 1

6
(Ĝ1

i−1,j,k − Ĝ1
i−2,j,k)]

]
(3.31)
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Figure 1. Sketch of the computational domain.

JC and JP are the determinants of the Jacobian matrix computed with the forward
and backward schemes.

4. Flow configuration and computational details
4.1. Initial and boundary conditions

The initial conditions for the mean velocity field of the isothermal duct consist in
two superimposed laminar Poiseuille profiles respectively sheared along the y- and
the z-directions (see figure 1 for the definition of the coordinate axes). At each point,
the minimal value of the two profiles is taken. A uniform pressure is prescribed and
the temperature distribution is derived from the velocity distribution from the so-
called Crocco–Busemann relation (see Schlichting 1979). A white noise of amplitude
A ≈ 5%Ub is superimposed on the mean velocity. The statistically converged state of
the isothermal duct is used as the initial condition for the heated duct.

The boundary conditions at the walls are no-slip, isothermal: these are compatible
with the use of periodic boundary conditions along the streamwise direction x. The
wall pressure is obtained by solving the Navier–Stokes equations at the wall. In
the heated case, we will call respectively the horizontal wall and the lateral wall the
wall parallel to the z-direction (corresponding to y = 0) and the wall parallel to
the y-direction (corresponding to z = 0). Note that this is an arbitrary definition
since gravity effects are found to be negligible (see § 4.3). When heating is applied, a
temperature Th is imposed at the horizontal wall which is higher than the temperature
of the other three walls. The latter have an identical reference temperature denoted
Tw . Three different cases are studied corresponding respectively to Th/Tw = 1.75, 2.5
and 3.25.

4.2. Definition of statistical quantities

Mean quantities We take advantage of the periodicity in the x flow direction and
the statistical flow stationarity to define the mean quantities as the averaging in the
homogeneous direction, x, and in time. For any given quantity f(x, t), the mean f will
be written as 〈f〉(y, z), y and z being the transverse directions of the computational
domain. The fluctuation f′(x, t) from the mean satisfies f′(x, t) = f(x, t) − 〈f〉(y, z).
Note that here we use the conventional notation with a prime but the fluctuation is
obviously distinct from the subgrid-scale field previously defined by equation (3.2).
For convenience, we denote U(y, z) = 〈u〉(y, z) and W (y, z) = 〈w〉(u, z).

Bulk quantities The bulk quantity fb refers to the quantity 〈f〉(y, z) averaged along
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the y- and z-directions, so that

fb =
1

LyLz

∫ Lz

0

∫ Ly

0

〈f〉(y, z) dy dz. (4.1)

Ly and Lz are the transverse dimensions of the computational domain. The bulk
velocity Ub involves the density and is defined as

Ub =
[ρu]b
ρb

(4.2)

where ρb is the bulk density.
Wall units τ(y, z) is the wall shear stress based upon the mean viscosity and upon

the normal derivative of the mean longitudinal velocity component U, both quantities
taken at the wall:

τ(y, z) =

[
〈µ〉∂U

∂n

]
w

, (4.3)

where n designates the direction normal to the wall. We call τ the local wall shear
stress. A more global quantity can be obtained by averaging on the walls: τa stands
for the averaged value of τ over the four walls of the duct in the non-heated case.
In the heated case, since we focus upon the flow behaviour near the heated wall, τa

designates the averaged value over the heated wall only. From both local and global
variables τ and τa, we may construct local and global friction velocities, respectively
called ulτ and uτ:

ulτ(y, z) =

√
τ

〈ρ〉 , (4.4)

uτ(y, z) =

√
τa

〈ρ〉 . (4.5)

Similarly, the local and the global viscous thicknesses are

δl(y, z) =
〈µ〉
〈ρ〉ulτ , (4.6)

δ(y, z) =
〈µ〉
〈ρ〉uτ . (4.7)

We finally define a viscous thickness δa and a friction velocity uaτ which do not depend
on the position by averaging δl(y, z) and ulτ(y, z), respectively, on the four walls of the
duct in the non-heated case and on the heated wall in the case with heating.

4.3. Computation details

The size of the computational domain is taken equal to 12.8Dh × Dh × Dh (Dh
being the hydraulic diameter), in the x (streamwise), y and z (transverse) directions
respectively. For the most strongly heated case (see § 6), corresponding to Th/Tw =
3.25, a larger streamwise dimension of 18Dh is used. Figure 2 shows samples of
two-point correlations of velocity fluctuations for the isothermal and the heated duct
corresponding to Th/Tw = 2.50. These are representative of the streamwise length
of the longest turbulence structures present within the flow. Both for the non-heated
and for the heated cases, the correlation coefficient is close to zero for x/Dh = 6.4.
Therefore, a computational domain of streamwise length 12.8Dh is considered to
be sufficient. However, figure 2 shows that this length tends to be longer when
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Figure 2. Streamwise two-point correlations, Ruu, of the streamwise velocity component at
different locations. (a) Heated square duct and (b) isothermal square duct.

heating is applied: we therefore increase it to 18Dh for Th/Tw = 3.25. We recall that
statistical quantities, those between brackets 〈 〉, are obtained by averaging the flow
in the homogeneous direction, x, and in time. The quantities obtained with such an
averaging procedure will be referred to as mean quantities.

For all the computations, the computational grid consists of 120 × 60 × 60 nodes
along x, y and z. In order to correctly simulate the near-wall regions, a non-uniform
(orthogonal) grid with a hyperbolic-tangent stretching (see Le, Moin & Kim 1997)
is used in the y- and z-directions. The distribution of the discretization points is
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identical in the y- and z-directions. The wall units are a priori determined through
the friction velocity obtained by the Jones equation (Jones 1976):

1

f
1/2
D

= 2 log(Reif
1/2
D )− 0.8, (4.8)

where fD is D’Arcy’s factor and Rei = 1.125Reb (fD = 8(uτ/Ub)
2). For the isothermal

computation, the minimal and the maximal grid spacings in the y- and z-directions
are respectively 1.0 and 12 wall units. The grid spacing in the x-direction is ∆x+ = 42
for the two cases.

The isothermal LES is performed at a Reynolds number of Reτ = 393 based upon
the friction velocity and the hydraulic diameter. This corresponds to a Reynolds
number Reb = 6000 based on the bulk velocity. The two previous Reynolds numbers,
Reτ and Reb, are defined with the bulk density from (4.2) and the dynamic viscosity
at the wall temperature. The Mach number M based upon the bulk velocity and the
wall temperature is taken equal to 0.5. The compressibility effects are then expected
to be small in the isothermal case. For the heated duct simulations, the bulk Reynolds
number and the Mach number are identical to the non-heated case with Reb = 6000
and M = 0.5 (based upon the bulk velocity and the temperature of the non-heated
walls Tw). It is well known that the compressible Navier–Stokes equations at low
Mach number become very stiff because of the large difference in magnitude between
the acoustic and dynamic velocities. The choice of the time step is governed by the
speed of the sound waves, making the computation extremely time consuming. As a
consequence, relatively low resolutions have to be utilized to allow computations in
reasonable computing time. Thus, LES must be used if we wish to study relatively
high Reynolds number flows.

As shown in previous studies (see Wardana, Ueda & Mizomoto 1994), if the non-
dimensional number Gr/Re2 � 1 (Gr is the Grashof number), the buoyancy effects
are negligible. In the present simulations, we have not introduced any buoyancy
forcing since (Gr/Re2)b ≈ O(10−7). The index b denotes bulk quantities (see (4.1)).

5. The isothermal duct
To validate our numerical procedure and subgrid-scale models, we first present

comparisons with the incompressible square duct DNS by Gavrilakis (1992) (Reτ =
300, Reb = 4410) and by Huser & Biringen (1993) (Reτ = 600, Reb = 10 320). We have
checked that, in our low-Mach number LES, the compressibility effects are weak: the
maximal mean velocity divergence is indeed of the order of 10−3(Ub/Dh). This makes
the comparison significant.

We first have to choose the optimal grid resolution, which has to be determined
as a compromise between the quality of the results and affordable computer time.
Figure 3 compares, for the isothermal duct, the results of a computation at a resolution
of 120 × 60 × 60 discretization points and of a computation at a lower resolution
consisting of 64 × 50 × 50 discretization points. For this latter case, the minimal
and maximal distances in the directions normal to the walls are 1.8 and 15 wall
units respectively. The grid spacing in the longitudinal direction is ∆x+ = 78. To
increase the statistical sampling, flow symmetries are eventually utilized. Some of
the distributions are then ensemble averaged over the eight similar triangles formed
by the wall and the diagonals of the isothermal square duct. The flow statistics are
collected over 90 time units (Dh/Ub) for high-resolution simulations.
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Figure 3. Isothermal duct. Comparison of Gavrilakis’ (1992) DNS with our LES at different
resolutions: — —, Gavrilakis’s DNS; �, low resolution LES; 4, high resolution LES. (a) Profiles
of the r.m.s. of the three velocity components and profiles of the Reynolds stress components
normalized by the friction velocity (uτ(y, z), see (4.5)) at the wall bisector. (b,c) Local wall shear
stress (τ) normalized by the averaged wall shear stress (τa) as a function of the distance from the
lateral wall z and mean streamwise velocity at the wall bisector (U) normalized by the friction
velocity uτ(y, z).
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Figure 4. Isothermal duct: (a) secondary mean flow vectors; (b) iso-contours of the mean
streamwise velocity (normalized by the bulk velocity Ub).

Figure 3 shows that the statistical quantities based both upon the velocity fluc-
tuations and the mean quantities are considerably improved when the resolution is
increased: a very good agreement with Gavrilakis’ DNS results is indeed obtained.

We now concentrate on the higher resolution computations. The contours of the
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Gavrilakis (1992) LES

U0/Ub 1.33 1.29
Max (τ/τa) 1.18 1.11
Max (W/Ub) 1.9% 1.92%

uaτ/Ub (% error) 0.0655 (Jones 1976) 0.06201 (≈ 5.32%)

Table 1. Comparison of statistical results.

(a) (b)

Figure 5. Isothermal duct, secondary flow vectors: (a) instantaneous secondary flow vectors;
(b) mean secondary flow vectors. The vector size is function of the secondary flow magnitude.

mean streamwise velocity and the mean secondary flow vectors in a quarter of a cross-
section are shown in figure 4. The mean streamwise velocity is directed away from
us. The mean secondary flow vectors reveal the existence of two streamwise counter-
rotating vortices in each corner of the duct. The velocity maximum associated with
this flow is around 1–2% of the bulk velocity, Wmax/Ub = 1.192%. The distribution of
the streamwise velocity contours in the vicinity of the corner is due to the momentum
transfer by the secondary flows from the core of the duct toward the corner, Huser
& Biringen (1993). One interesting characteristic of this transverse flow is the drastic
difference in magnitude between the mean and the instantaneous secondary flow
fields. The instantaneous transverse flow field in a whole section is shown in figure 5.
It clearly indicates a very pronounced flow variability with an instantaneous field very
distinct from the mean field. The maximum intensity of the transverse fluctuating
velocity field is of the order of ten times the maximum of the corresponding mean
velocity field. For the vorticity, the transverse motions are associated with streamwise
vorticity generation, whose maximum is about one third of the transverse vorticity
maximum.

Figure 6(a) clearly demonstrates (see also Salinas-Vázquez & Métais 1999) that the
local wall shear stress (τ/τa) distribution at the wall is very sensitive to the numerical
resolution. This quantity therefore constitutes a very good quality check for any
computation. The wall shear stress is normalized here by its spatially averaged value
obtained through integration over the whole length of the four walls of the duct
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(— - —). (a) Local wall shear stress (τ), normalized by the averaged wall shear stress (τa) and
(b) mean streamwise velocity at the wall bisector (U), normalized by the friction velocity (uτ(y, z)).

(τa). Although the Reynolds numbers are slightly different, Gavrilakis’ DNS and the
present LES compares very well. The local wall shear stress exhibits two local maxima
located around z/Dh = 0.2 and z/Dh = 0.5. Gavrilakis’ DNS results exhibit just one
maximum located around z/Dh = 0.5. The values of these maxima are slightly lower
than those given by Gavrilakis (1992), especially at the duct centre. However, the DNS
by Huser & Biringen (1993) performed at higher Reynolds number show a decrease
with increasing Reynolds number (see figure 6). The normalized mean velocity profile
at the wall bisector (middle plane of the duct) as a function of the distance from the
wall is compared with Gavrilakis’ and Huser & Biringen’s data and a good agreement
is obtained (figure 6). Compared with the classical plane channel or boundary layer,
the ‘log law’ is slightly shifted upward with a smaller value of Kármán’s constant
(see Gavrilakis 1992). Note that the profile is normalized here by the friction velocity,
uτ(y, z), defined by (4.5). It can be checked that a normalization by the local friction
velocity, ulτ(y, z) (see (4.4)), moves the profiles closer to the classical ‘log law’.

Table 1 shows various quantities related to the mean flow. Our LES give U0/Ub ≈
1.29 where U0 is the value of the mean velocity at the duct centreline. It is consistent
with the values obtained by Gavrilakis (1992) of 1.33 and by Demuren & Rodi (1984)
of 1.25. Note that uτ/Ub is 5.3% smaller than that obtained through Jones’ correlation
(Jones 1976).

In figure 7, the profiles of the normalized streamwise and transverse mean velocity
profiles U(y, z)/Ub and W (y, z)/Ub are plotted at different constant-z planes and
are compared with those obtained by Gavrilakis (1992). The W (y, z) profiles clearly
indicate the presence of the secondary flows. Their location and their magnitude are
very well reproduced by our LES. Note that the mean secondary flow is relatively
weak (1–2% of the bulk streamwise velocity), but its effect on the transport of
heat and momentum is quite significant. If one wishes to correctly reproduce this
weak secondary flow with a classical one-point-closure statistical modelling approach,
elaborate second-order models have to be employed. It is important to note that LES
without any modification of the model constants are able to correctly reproduce such
statistical quantities.

The LES and DNS turbulent intensity profiles are also compared in figure 7 for
five different constant-z planes, z/Dh = 0.05, 0.15, 0.25, 0.35 and 0.5 (for convenience,
we use these values; however they correspond to a distance of z/Dh = 0.053, 0.147,
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0.261, 0.349, 0.483 for our LES and z/Dh = 0.052, 0.149, 0.258, 0.345, 0.485 for
Gavrilakis’ DNS). The intensities are normalized by the friction velocity, uτ(y, z). The
discrepancies mainly affect the 〈v′w′〉 component of the Reynolds stress tensor with
a maximum discrepancy of about 10%. The agreement is otherwise very satisfactory.
In the middle plane (z/Dh = 0.5), a strong turbulent activity is observed: the r.m.s.
velocity-fluctuation profiles exhibit trends which are very similar to standard turbulent
channel flows or boundary layers. Indeed, the u′rms component dominates the other
two components with a very marked peak close to the wall. The spanwise velocity
r.m.s. w′rms is slightly larger than the normal velocity r.m.s. v′rms. In the vicinity of the
wall, all r.m.s. values decrease when we approach the corner and a very low level
of turbulent activity is reached. The Reynolds stress component 〈−u′v′〉 constitutes
the signature of ejections from the wall and sweeping motion towards the wall. In
the middle plane, its peak is further from the wall than the u′rms peak and its profile
resembles the classical profile observed in turbulent channel flow. The 〈−u′v′〉 peak
becomes smaller and smaller as we approach the corner: this indicates that ejections
and sweeps are almost totally absent in the corner region. This is consistent with
figure 6 which shows that the local wall shear stress associated with the longitudinal
mean velocity is strong in the duct middle plane, promoting ejections and sweeps,
while a weaker shear is observed near the corner which is less favourable for these
motions. Ejections and sweeps will be investigated in greater detail in § 7.3. Due to the
presence of the lateral wall, the mean Reynolds stress has three non-zero components
〈u′v′〉, 〈u′w′〉 and 〈v′w′〉. This is at variance with the classical boundary layer for which
periodicity is assumed in the spanwise direction so that 〈u′v′〉 is the only non-zero
component. As pointed out by previous authors (see Huser & Biringen 1993), 〈v′w′〉 is
closely related to the presence of secondary flow. Indeed the secondary flow generation
is often attributed to the strong near-wall gradients (normal and lateral gradients)
of 〈v′w′〉 as well as to the strong gradients of 〈w′2〉 and 〈v′2〉 created between the
wall bisector and corner (see Demuren & Rodi 1984). It is important to note that
all the statistical quantities are very well reproduced by the LES although these are
performed at considerably less cost than the DNS. Indeed, the present LES utilized
a grid resolution ≈ 7.6 times coarser than the resolution used in Gavrilakis’ DNS.

A more detailed analysis of the flow anisotropy may be performed through the
anisotropy-invariant map proposed by Lumley & Newman (1977). This map char-
acterizes the various possible states of the turbulence from the anisotropy tensor bij
deduced from the Reynolds stress tensor:

bij =
〈u′iu′j〉 − 2

3
Kδij

2K
, (5.1)

where K = 1
2
〈u′iu′i〉. The three invariants (I , II and III) are given by

I = bii, II = −bijbji/2, III = bijbjkbki/3. (5.2)

The various states characterizing the turbulence can be identified by the curve of −II
as a function of III (see figure 8b). Isotropic turbulence corresponds to−II = III = 0.
The top of the graph represents the most anisotropic state, called the one-component
régime, for which one of the r.m.s. velocity components dominates the other two.
The upper branch of the graph represents the two-component régime. The other two
boundaries of the graph are representative of axisymmetric states. We compute −II
and III in three different constant-z planes at different distances from the lateral
wall, corresponding to z/Dh = 0.5 (middle plane), z/Dh = 0.25 and z/Dh = 0.05. The
three different planes are identified with different symbols (see figure 8a). The arrows
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on figure 8(c) indicate the direction of increasing y (distance from the wall) in each
of the three planes: the continuous line corresponds to z/Dh = 0.5, the dashed line to
z/Dh = 0.25 and the dotted line to z/Dh = 0.05.

As previously stressed, the turbulence behaviour in the middle plane is similar to a
channel flow or a boundary layer. Near the horizontal wall, a classical two-component
behaviour is observed due to the strong decrease of the velocity component normal to
the wall. A tendency towards a one-component state is observed until y+ ≈ 9, where
there is a bifurcation along the axisymmetry branch towards a more isotropic state. It
is very close to the value found in classical boundary layers where this critical height
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Figure 7. Isothermal duct. Comparison between the results of the present LES (4) and DNS
of Gavrilakis (1992) (— —) for five z-planes z/Dh = 0.05, 0.15, 0.25, 0.35 and 0.5. Values are
normalized by the bulk velocity (Ub) for mean streamwise velocity (U) and mean spanwise velocity
(W ). Values are normalized by the friction velocity (uτ(y, z)) for r.m.s. of velocities and Reynolds
stress.

is located around y+ ≈ 8 (see Antonia, Danh & Prabhu 1977). In the duct centre,
the turbulence is very close to isotropy. Outside this symmetry plane, the turbulence
characteristics are significantly influenced by the lateral wall. For z/Dh = 0.25, the
turbulence behaviour is analogous to the middle plane in the vicinity of the horizontal
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wall. However, when the bisector plane of the corner (orientated at 45◦) is crossed,
the tendency towards an isotropic state is stopped and the axisymmetry branch is
followed. The flow behaviour is totally different in the plane closer to the lateral wall.
Near the corner, the flow is strongly affected by the presence of both walls and the
turbulence corresponds to a one-component régime close to the horizontal wall. When
we move away from it, the turbulence moves towards a two-component behaviour.
Note that all our computed points are located on Lumley’s anisotropy map, which
constitutes a quality check for our computation.

6. The heated duct
The geometrical characteristics of the heated ducts are similar to those of the

isothermal duct and their physical dimensions are given in § 4.3. The difference with
the isothermal duct is the imposition of a higher temperature Th at the horizontal
wall, leaving the other walls at the reference temperature Tw . Three cases of increasing
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Figure 9. Large-scale motion over the hot wall in a heated duct (Th/Tw = 2.5). Instantaneous
transversal vector field and an isosurface of temperature corresponding to T/Tw = 2.1.

heating intensity are studied corresponding respectively to Th/Tw = 1.75, 2.5 and 3.25.
The statistical results are still obtained by averaging in the homogeneous direction
(streamwise direction x) and in time. To obtain better statistics, the symmetry with
respect to the bisector plane of the hot wall was used by averaging on the two
symmetric rectangles formed by this plane.

For turbulent wall flows, the effects of heating on the near-wall turbulence and its
structures have been studied experimentally by Wardana, Ueda & Mizomoto (1994,
1995) and Cheng & Ng (1982). It has been shown that strong wall heating induces
a significant change in the large-scale motions of the boundary layer. These changes
are characterized by the enhancement of the ejections from the heated wall which
expel hot and slow fluid from the near-wall region to the fluid interior. This has been
visualized both in the experimental work by Cheng & Ng (1982) and in the numerical
work by Salinas-Vázquez (1999). In spite of the great amplitude of the instantaneous
temperature fluctuations associated with these strong ejections the experimental work
did not report a strong influence either on the mean velocity or on the r.m.s. of
the velocity fluctuations and the Reynolds stress components statistics. This was
confirmed by the plane channel numerical simulation by Salinas-Vázquez (1999). In
the channel flow, the random character of the spatial occurrence of the ejections tends
to wipe out any significant effects on the various statistical quantities. Conversely,
in the heated duct, the enhancement of the size of the ejections above the heated
wall and the confinement produced by the lateral wall are such that the hot fluid
ejections, for strong enough heating, can only take place in the vicinity of the duct
middle plane. The reader is referred to § 7 for a detailed discussion on the generation
mechanisms of these turbulent structures. This is clearly displayed on figure 9 which
shows the instantaneous secondary flows and the associated ejection region. The
constant appearance of the strong ejections near the bisector plane of the heated wall
not only creates significant changes in the turbulent intensities but also affects the
amplitude of the mean velocity. These effects are clearly illustrated in figure 10(a)
which compares the mean secondary flow vectors in one half of the duct section for
the heated case (Th/Tw = 2.5) and for the non-heated case. The size and intensity of
the mean secondary flows significantly increase when the heating is increased. This is



220 M. Salinas Vázquez and O. Métais
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Figure 10. (a) Cross-section of the mean secondary flow vector field: heated duct (Th/Tw = 2.5)
(right) and isothermal duct (left). (b) Comparison between the results of the isothermal duct LES
(— —) and the heated ducts LES: Th/Tw = 1.75 (�), Th/Tw = 2.5 (4) and Th/Tw = 3.25 (∗). Mean
streamwise (U) and spanwise (W [×100]) velocities over the hot wall for five z-planes z/Dh = 0.05,
0.15, 0.25, 0.35 and 0.5. Values are normalized by the bulk velocity (Ub).

confirmed by the mean velocity profiles displayed in figure 10b). Between the middle
plane and the corner, the transverse mean velocity exhibits maxima whose amplitude
increases with increasing heating intensity. Furthermore, these are located further
and further away from the heated wall. This indicates an amplification of both the
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Figure 11. Heated ducts. Comparison between the results of the isothermal duct LES (——–) and
of the heated ducts LES: Th/Tw = 1.75 (�), Th/Tw = 2.5 (4) and Th/Tw = 3.25 (∗) for three
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velocity, similar in all cases; r.m.s. are multiplied by 10 and Reynolds stress by 100.

size and the magnitude of these mean secondary flow regions. Compared with the
non-heated case, the magnitude of the mean secondary flows is increased by more
than 10% for Th/Tw = 1.75 and by more than 50% for Th/Tw > 2.5. Note that the
near-wall shear of the mean streamwise velocity is progressively reduced when the
heating increases.

Lets now turn to the second-order statistics related to the fluctuating velocity field.
All the quantities shown in figure 11 are normalized with the bulk velocity Ub, which
is identical for all the simulated cases. Stronger ejections tend to generate more
turbulent activity in the outer part of the boundary layer. However, a competing
phenomenon is the enhancement of the viscous dissipation close to the heated wall
associated with the viscosity increase with temperature. Indeed in the three planes
considered in figure 11, we see a reduction of the three components of the r.m.s.
velocity fluctuations in the vicinity of the heated wall. This reduction is particularly
obvious in the middle plane of the duct. The peaks of the three components u′rms, v′rms
and w′rms are shifted upwards as the heating is enhanced and the turbulent activity
is more significant outside the near-wall region. 〈u′v′〉 is also diminished close to the
wall and slightly augmented in the outer region. This is a sign of the reinforcement
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Figure 12. Isocontours of the 〈u′v′〉 Reynolds stress component: (a) isothermal (left) and heated
duct Th/Tw = 1.75 (right); (b) heated duct Th/Tw = 2.5 (left) and heated duct Th/Tw = 3.25 (right).
Values are normalized by the bulk velocity.

of the ejections. This trend is not so clear in the corner region where ejections are
totally absent. The concentration of turbulent events, ejections and sweeps, in the
middle plane is clear on figure 12 which shows the spatial distribution of positive and
negative isocontours of 〈u′v′〉. The negative values corresponding to predominating
ejection–sweep mechanisms are more and more concentrated around the middle plane
when the heating is enhanced.

The concentration of the ejections in the middle plane region is also clearly
noticeable from examination of the variations of the wall shear stress (τ) and the
mean wall heat flux qw along the heated wall (see figure 13). The mean-heat flux is
defined as

qw = [〈κ〉 ∂〈T 〉/∂n]w, (6.1)

where κ is defined by (2.7), n designating the direction normal to the wall. Near
the duct middle plane, slow and hot fluid is ejected from the wall towards the duct
interior. It induces a strong reduction of the wall shear stress in that region in the
strongly heated cases. Similarly, the temperature gradient normal to the heated wall
is significantly reduced when one compares the weakly and strongly heated cases.
Outside the middle plane, the reinforcement of the secondary flows with heating is
accompanied by a stronger impingement on the heated wall of the fluid coming from
the duct core. It generates more significant velocity gradients and therefore greater
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(qw) on the hot wall normalized by the averaged wall heat flux on the hot wall (qaw).
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Figure 14. Half cross-section of the heated duct at Th/Tw = 2.5: (a) contours of the ratio
〈µt〉(y, z)/〈µ〉(y, z) (step 0.1); (b) contours of the instantaneous ratio µt(x, t)/µ(x, t) (step 1.0), and
transversal vector velocity field. The heated wall corresponds to y/Dh = 0.

wall shear stress in the region around z ≈ 0.2Dh. This effect is not so clearly marked
for the heat flux.

To end this section, we consider the importance of the subgrid-scale contribution
to the statistical quantities such as the Reynolds stresses for instance. Since the
fluctuating subgrid-scale part of the field is not explicitly known, this contribution
cannot be directly evaluated. The good agreement between our LES and Gavrilakis’
DNS shown in § 5 lead us to think that the subgrid-scale contribution is small. More
quantitative indications can however be obtained by looking at the importance of
the turbulent eddy viscosity relative to its molecular counterpart. Let us consider the
dynamic turbulent viscosity µt(x, t) = ρ(x, t)νt(x, t). Figure 14(a) shows a half-cross-
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Figure 15. Heated duct LES at Th/Tw = 2.5: comparison between the results of the case with a
constant molecular viscosity µ = µ(Tw) (——–) and the case with a molecular viscosity function
of temperature (4) (see equation (2.6)) for three planes (a) z/Dh = 0.5, (b) z/Dh = 0.25 and
(c) z/Dh = 0.15. Values are normalized by the bulk velocity (Ub), similar in all cases; r.m.s. are
multiplied by 10 and Reynolds stress by 100.

section of the ratio of the mean turbulent viscosity over the mean molecular viscosity
〈µt〉(y, z)/〈µ〉(y, z) for the heated duct with Th/Tw = 2.5. The maximum values remain
small and are of the order of 0.7. As expected, these are concentrated in the regions of
highest turbulent activity (see figure 12), that is to say close to the cold and the lateral
wall more particularly around their bisector plane. Furthermore, the mean turbulent
viscosity remains very weak over the hot wall. It is important to notice that, although
the ratio of the mean quantities is small, the instantaneous turbulent viscosity can
be locally as large as ten times its molecular counterpart. Figure 14(b) shows, at a
particular instant, a half-cross-section of the instantaneous ratio µt(x, t)/µ(x, t) for
the heated duct with Th/Tw = 2.5. The projection of the instantaneous velocity field
on the cross-section is also represented. At this particular instant, the ratio reaches
values up to about 10 in very localized regions of the flow. This clearly demonstrates
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Figure 16. Viscous thickness δl in the heated duct LES at Th/Tw = 2.5: comparison of the case
with a constant molecular viscosity µ = µ(Tw) (——–) and the case with a molecular viscosity
function of temperature (4) (see equation (2.6)). The dashed line (— —) represents the averaged
viscous thickness δa for the isothermal duct.

the crucial rôle played by the turbulent viscosity in these particular flow regions and
the necessity to efficiently model the action of the subgrid scales.

6.1. Viscosity effects

To clearly identify the effects associated with the variations of the viscosity with
temperature, we have compared our previous Th/Tw = 2.5 heated-duct LES with
variable viscosity to another LES which is identical except for the viscosity which is
now kept constant with a value µ = µ(Tw). The comparison of the statistics is shown
in figure 15. The change in viscosity significantly affects both the mean velocity profiles
and the statistics based upon the fluctuating field and these effects are felt from the
middle plane to the duct corner. Furthermore, figure 15 reveals that the increase of the
viscosity close to the wall, compared to the constant viscosity case, has similar effects
on the statistics to an enhancement of the wall heating. Indeed, as far as the mean
flow is concerned, the secondary transverse flow is enhanced in the variable viscosity
case and the longitudinal velocity shear is less pronounced at the wall. Figure 16
compares, for the variable and constant viscosity cases, the variations of the viscous
length at the heated wall with the distance from the lateral wall. The increase in
viscosity is accompanied by an increase of the viscous length over the whole heated
wall. It is established that the size of the low-speed and high-speed streaks scales
with the viscous thickness and an increase of the latter will automatically induce an
enlargement of the streaky structures. This is confirmed by the u′rms profile shown on
figure 15 which displays a peak situated further away from the heated wall in the
variable viscosity case. It is now commonly accepted that the ejection mechanism is
intimately linked with the near-wall low-speed streaks: an augmentation of the streak
size in the middle plane is therefore accompanied by an enhancement of the size of
the hot fluid ejections. This triggers larger secondary transverse flows as reflected in
the statistics. The increase of the size of the turbulent structures in the vicinity of the
heated wall is investigated in greater detail in § 7.

The effects of the heating on the statistics near the horizontal wall opposite to
the heated wall are investigated. Despite the significant changes observed on the hot
wall, figure 17 shows that the statistics are not strongly modified near the cold wall
compared to the non-heated case. Near the wall bisector, one may however notice an
increase in the statistical quantities related to the fluctuating normal component v′
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(a)
0.5

0.4

0.3

0.2

0.1

0 1 2 0.2 0.4 0.6 0.2 0.6 0 0.6 –0.1 0 0.1 –0.1 0 0.1

0.5

0.4

0.3

0.2

0.1

y
Dh

y
Dh

(b)

0.40.20.4

0 1 2 0.2 0.4 0.6 0.2 0.6 –0.1 0 0.1 0 0.2 0.40.30 0.10.4

u«rms /Ub w «rms /Ub v «rms /Ub -–u«v «./Ub
2

0.2 –0.2

-v«w «./Ub
2 -u«w «./Ub

2

Figure 17. Comparison between the results of the isothermal duct LES (— —) and the heated
ducts LES: Th/Tw = 1.75 (�), Th/Tw = 2.5 (4) and Th/Tw = 3.25 (∗) for the cold wall opposite
to the hot one at (a) z/Dh = 0.5 and (b) z/Dh = 0.25. Values are normalized by the bulk velocity
(Ub); r.m.s. are multiplied by 10 and Reynolds stress by 100.

both for its r.m.s. profile and for the profile of the Reynolds stress component 〈u′v′〉.
This is a another signature of the enhancement of the ejections taking place at the
heated wall and which affect the v′ field in the whole duct.

7. Turbulent structures
In the previous section, we have mentioned the increase in size of the ejections due

to the increase in size of the streaky structures. We will now proceed to reinforce this
argument by examing the flow structures.

7.1. Low- and high-speed streaks

First, we will consider the streaks. Figure 18(a) shows the contours of the longitudinal
velocity fluctuations near the hot wall and one of the walls of the isothermal duct.
The classical streaky structures of the turbulent boundary layer are clearly visible and
their width is significantly enhanced near the heated wall. This streak enlargement
can be more quantitatively estimated by examination of the transverse correlation of
the longitudinal velocity correlation (see figure 18b). The negative peak indicates half
of the transverse wavelength of the low- and high-speed streaks. Let us denote by
λ this transverse wavelength. When normalized by the hydraulic diameter Dh, it is
clear that the streak spacing increases when the heating is augmented. Figure 18(b)
and table 2 indeed indicate that the streak spacing λ/2 saturates for a value close to
≈ 0.3Dh with no significant variations between the case Th/Tw = 2.5 and the case
Th/Tw = 3.25. This saturation can be understood with the following argument: if
streaky structures are present, it is reasonable to think that their minimal number has
to be three. Indeed, one low-speed current is associated with ejections of fluid from the
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Figure 18. (a) Fluctuating streamwise velocity contours near a wall of the isothermal duct (y+ = 13)
and near the heated wall (y+ = 16) of the heated duct (Th/Tw = 2.5). The contours are be-
tween −0.3 < u′(x, t)/Ub < 0.3 (u′(x, t) = u(x, t) − 〈u〉(y, z), see § 4.2). Positive contours are light
((u′(x, t)/Ub) > 0) and negative contours dark ((u′(x, t)/Ub) < 0). (b) Spanwise two-point correlation
of the streamwise velocity for the heated ducts Th/Tw = 3.25 · · · · · ·, y+ = 19, Th/Tw = 2.5 – – –,
y+ = 16, Th/Tw = 1.75 — —, y+ = 14 and isothermal duct ——–, y+ = 13.

wall. This ejected fluid has to be compensated by sweeping motions and high-speed
streaks on both sides of the low-speed streak. One can therefore conclude that the
maximum spanwise size of the streaky structures will be approximately one third of
the duct width. In this configuration, the low-speed streak will be located around the
central plane of the duct and surrounded with high-speed streaks associated with the
engulfment of fluid from the duct core towards the heated wall. In § 6.1, we argued
that the increase in size of the flow structures near the heated wall can be mainly
attributed to the viscosity augmentation. We then compute the transverse wavelength
λ+ normalized by the viscous thickness δa defined in § 4.2 (see table 2). We notice a
slight augmentation of λ+ in the two heated cases satisfying Th/Tw 6 2.5 compared
to the non-heated case. λ+ however remains close to the traditional value of 100
found in classical turbulent boundary layers and channel flows. For the most strongly
heated case Th/Tw = 3.25, the saturation due to the duct size implies a lower value
of λ+.

7.2. Quasi-longitudinal vorticity structures

In figure 19, we compare the flow structures present in the vicinity of the hot wall
corresponding to the Th/Tw = 2.5 case with the structures of the isothermal duct.
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Th/Tw δa/Dh λ/Dh λ/δa

1.0 0.0024 0.202 ≈ 85
1.75 0.0049 0.540 ≈ 110
2.5 0.0068 0.634 ≈ 93
3.25 0.0090 0.672 ≈ 75

Table 2. Streak size.

Heated duct Isothermal duct

x y

z

Turbulent structures
Q = 2.1 Ub/Dh

Figure 19. Visualization of turbulent structures in the heated duct (Th/Tw = 2.5) and in the
isothermal duct through the Q criterion (Hunt et al. 1988), Q = 1.6Ub/Dh.

Flow structures are identified here using the so-called Q criterion (Hunt, Wray &
Moin 1988) which is based upon the second invariant of the velocity gradient tensor,
Q = 1

2
(ΩijΩij−SijSij), where Ω is the antisymmetrical part and S the symmetrical part.

The positive-Q regions have proven to be a good indicator of the coherent vortices in
various wall-bounded or free-shear flows (see e.g. Dubief & Delcayre 2000). The three-
dimensional visualizations of figure 19 show the presence of longitudinally elongated
structures in both isothermal and heated cases. The size of these structures both in
diameter and length is however noticeably enhanced in the heated case and they are
more concentrated around the wall bisector.

The understanding of the link between longitudinal vortices and low- and high-
speed streaks constitutes an old debate of the chicken-and-egg type, with the goal
being to try to determine which generates the other. This is still an open issue that
we shall not address here, our main objective being to investigate the effect of wall
heating on the various flow structures. Figure 20 (bottom) shows that there exists
a close relationship between the longitudinal vortices and the low- and high-speed
streaks, since these vortices are always situated in the interfacial region between
the streaks (see Robinson 1991). As shown in figure 9 the low-speed streak which
corresponds to slow and hot fluid coming from the wall is clearly identified by
the folding of the temperature isosurface close to the heated wall. This folding
exhibits longitudinal oscillations of large wavelength. It is bordered by a succession
of longitudinal structures identified by the Q criterion which are associated with
violent ejections of hot fluid from the wall towards the duct core.
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Figure 20. Visualization of an ejection and of the lifting mechanism.

7.3. Ejections

In figure 20 (top), we have isolated a strong ejection event which is linked with
a longitudinal turbulent structure. They are similar in nature to those observed in
the isothermal case but of much greater size and intensity. The rôle played by
compressibility effects is investigated at the end of this section. To get a more
complete picture of the longitudinal structures, the vortex lines associated with these
events are plotted in figure 21. It shows that the observed longitudinal structures
do not correspond to vortex line concentrations but the Q isosurfaces are in fact
the signature of the quasi-longitudinal legs of several hairpin vortices organized in
succession, orientated in the longitudinal direction.

A classical way of identifying ejections and sweeps is to perform a quadrant
analysis of the Reynolds stress component 〈u′v′〉. This involves the decomposition of
this component as a function of the sign of the two fluctuating velocity components
that compose it. There are therefore four quadrants 〈(+u′)(+v′)〉1, 〈(−u′)(+v′)〉2,
〈(−u′)(−v′)〉3 and 〈(+u′)(−v′)〉4, where the plus sign and the minus sign correspond to
positive or negative values of the fluctuations. Willmarth & Lu (1972) showed, in a
boundary layer, that quadrants two and four are respectively related to the turbulent
ejections and to the turbulent sweeping motions. Figure 22 shows the profile of
〈(−u′)(+v′)〉2 and 〈(+u′)(−v′)〉4 in the duct middle plane z/Dh = 0.5 and in the plane
z/Dh = 0.25 both for the isothermal duct and the heated duct (Th/Tw = 2.5). In
the wall bisector, the regions of maximum activity of both the ejections and the
sweeping motions, which correspond to the minima of 〈(−u′)(+v′)〉2 and 〈(+u′)(−v′)〉4
curves, are shifted further away from the wall in the heated case. This seems to
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Figure 21. Turbulent structure, Q = 2.1Ub/Dh isosurface, and vortex lines. (a) Heated duct at
Th/Tw = 2.5 and (b) isothermal duct.

indicate an enhancement of the size of these motions in global units. However, for
the heated case and the duct bisector plane, the normalized 〈(−u′)(+v′)〉2 profile
exhibits a plateau of near constant value around −0.0018 for 0.2 . y/Dh . 0.3 with
a minimum located around y/Dh = 0.26 which indicates the location of maximum
intensity of the ejections. With the help of table 2, one can easily check that this
minimum corresponds in wall units to y = 38δa where δa is defined in § 4.2. In the
non-heated case, the middle-plane minimum value for 〈(−u′)(+v′)〉2 is reached around
y/Dh = 0.10, that is to say for y = 42δa (see table 2). This signifies that the size of
the ejection in wall units is nearly identical in the non-heated and the heated cases.
Figure 22 confirms that the ejections and sweeping motions are mainly concentrated
near the duct middle plane. Indeed, the quadrant analysis at z/Dh = 0.25 indicates
a significant reduction of both 〈(−u′)(+v′)〉2 and 〈(+u′)(−v′)〉4 components compared
with the duct bisector and with the isothermal case. This result confirms the previous
flow visualizations where turbulent structures were more concentrated near the duct
middle plane in association with the central low-speed streak.

The vorticity associated with the streaky structures, the ejections and the sweeps
can be quantified through the profiles of the fluctuating vorticity components. Let
ω = ∇ × u be the vorticity vector and ω′ = (ω′x, ω′y, ω′z) the fluctuating vorticity
vector. Figure 23 represents the y-profile of ω′x rms, ω′y rms and ω′z rms normalized by
Ub/Dh in both planes z/Dh = 0.5 and z/Dh = 0.25. The distance y from the wall is
normalized by δ defined by (4.7). In the non-heated duct (figure 23b), the qualitative



LES of the turbulent flow through a heated square duct 231

0.001

0

–0.001

–0.002

–0.003
0 0.2 0.4 0 0.2 0.4

0.001

0

–0.001

–0.002

–0.003

0 0.2 0.4

0.001

0

–0.001

–0.002

–0.003
0 0.2 0.4

0.001

0

–0.001

–0.002

–0.003

y/Dh y/Dh

-u
«v

«. 2
/U

b2
-u

«v
«. 2

/U
b2

-u
«v

«. 4
/U

b2
-u

«v
«. 4

/U
b2

(a)

(b)

Figure 22. Quadrant analysis of the Reynolds shear stress component (〈u′v′〉) for the isothermal
duct (— —) and heated duct Th/Tw = 2.5 (——–). We compare the ejections (second quadrant
〈u′v′〉2, (left)) and the sweeping motions (fourth quadrant 〈u′v′〉4, (right)) for two z-planes: (a)
z/Dh = 0.5 and (b) z/Dh = 0.25. Values are normalized by the bulk velocity (Ub).

behaviour of the vorticity components is similar to the classical turbulent channel
flow (see Lamballais, Lesieur & Métais 1997). The maximum vorticity produced
is spanwise and at the wall. This constitutes a signature of the high-speed streaks
where the sweeps produce high values of the local spanwise vorticity at the wall.
The r.m.s. vorticity perpendicular to the wall is higher than the longitudinal vorticity
in the region 5 . y+ . 50. This is another statistical indicator of the streaks. The
vorticity distribution is nearly isotropic near the duct centre with a nearly equal
repartition between the three r.m.s. components. Compared to the middle plane, the
spanwise vorticity component is significantly reduced at the wall in the z/Dh = 0.25
plane, indicating a weakening of the sweeping motions. Both the location and the
amplitude of ω′y rms are however identical in both planes. When heating is applied
with Th/Tw = 2.5, the spanwise component no longer dominates the other two
components, except in the near-wall region of the middle plane (figure 23a (right)).
In this region, the strong rise observed in the non-heated case is significantly reduced.
This reduction is attributable to the enhanced viscous effects when heating is applied
and also to the fact that the central region of the duct is most of the time occupied by
the low-speed streak. The maximum of ω′z rms is shifted slightly further away from the
wall compared to the non-heated case. An interesting feature is the local maximum
of ω′x rms around y+ ≈ 30. In global units, this location corresponds to y ≈ 0.2Dh
which is the beginning of the plateau of negative values for 〈(−u′)(+v′)〉2 observed in
figure 22 and which corresponds to a region of the strongest ejection activity. This
demonstrates that longitudinal vorticity generation is strongly linked with the ejection
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Figure 23. Vorticity r.m.s. profiles (ω′x rms (——–), ω′y rms (– – –) and ω′z rms (— —)) for (b) the

isothermal duct and (a) the heated duct Th/Tw = 2.5, for two z-planes: z/Dh = 0.5 (left) and
z/Dh = 0.25 (right). Vorticity values are normalized by the bulk velocity (Ub) and hydraulic
diameter (Dh) and the distance from the wall by the viscous thickness δ.

process as shown with the vortex lines plotted in figure 21. In the z/Dh = 0.25 plane,
the local maximum of the longitudinal fluctuating vorticity is shifted much closer to
the wall in correspondence with the 〈(−u′)(+v′)〉2 profile of figure 22. The reduced
streaky activity in this plane can be seen through the reduction of the peak of ω′z rms.
It is important to note that the vorticity level is significantly reduced in the heated
case in comparison with the non-heated case when the vorticity is normalized with
the global unit Ub/Dh. However, the vorticity could also be normalized by the wall
unit uaτ/δ

a where uaτ is the average of uτ (defined by (4.5)) over the four duct walls in
the non-heated case and over the heated wall in the case with heating. δa is defined
in § 4.2. We found uaτ/δ

a ≈ 27.3Ub/Dh in the non-heated case and uaτ/δ
a ≈ 3.6Ub/Dh

in the heated case. With a choice of uaτ/δ
a as a unit for the vorticity the values shown

in figure 23 have then to be divided by 27.3 in the non-heated case and by 3.6 in
the heated case. This second scaling is certainly more representative of the vorticity
generation associated with the ejection mechanism, since the ejections induce a lift-up
and a stretching of the vortex lines, which are originally situated in the near-wall
region.

Figure 24 compares, in the middle plane, the longitudinal vorticity in the non-heated
and in the heated cases using the wall-unit non-dimensionalization. It is clear that the
longitudinal vorticity generation is significantly enhanced when heating is applied in
relation to the stronger ejections.

A clearer view of the ejection process can be acquired by selectively considering
the (y, z)-planes where violent ejections take place. We select these planes in the
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Figure 24. Comparison of the streamwise vorticity r.m.s. (ω′x rms): isothermal duct (�) and heated
duct Th/Tw = 2.5 (4). Vorticity values are normalized by the friction velocity (uτ(y, z)) and the
viscous thickness δ.

following way: in each transverse plane we consider the point on the wall bisector
(zE = 0.5Dh) situated at a distance yE from the heated wall and corresponding to the
minimum of the second quadrant 〈u′v′〉2. The case we consider below is the heated
case Th/Tw = 2.5; we checked from figure 22 that yE ≈ 0.26Dh. We then apply the
following conditional sampling:

D(Ejec) =

 1 if u′(yE, zE) < 0, v′(yE, zE) > 0 and
(u′v′(yE, zE)/〈u′v′〉(yE, zE)) > 10

0 otherwise.
(7.1)

If D(Ejec) = 1 we take into account the associated transversal plane in the statistical
sampling; if D(Ejec) = 0 the corresponding plane is discarded. The statistics are
then obtained with all the transversal planes that fulfil the previous condition with a
statistical sampling of several hundred instantaneous records. The statistics are then
representative of several similar ejection events and do not focus on one isolated event
only. Figure 25(a) displays the averaged transverse velocity field resulting from this
statistical sampling. Only the bottom half of the duct near the heated wall is shown.
Note that the averaging process masks any asymmetry, producing a symmetrical
averaged structure. The ejection process and the two associated longitudinal vortices
are clearly identified. In figure 25, the mean transverse field and the conditionally
averaged tranverse fields are compared for one quarter of the duct (part b and c
respectively). It clearly shows that the cores of the longitudinal vortices associated
with the ejection process are situated closer to the duct middle plane and further
away from the heated wall than the mean-field longitudinal vortices. Their core is
situated at a distance of ≈ 0.25Dh from the heated wall (y ≈ 37δa).

Until now, we have mainly concentrated on the enhancement of the size of the
various flow structures, but we have not yet investigated the possible effects of
density differences on the ejections, such as flow expansion or compression effects.
We still consider the conditionally averaged field shown on figure 25. Figure 26
shows the contours of the two conditionally averaged velocity derivatives ∂w/∂z and
∂v/∂y in the cross-sections associated with the ejections. Figure 26 also displays the
divergence of the velocity projected on the cross-section (∇·u)p = ∂v/∂y+∂w/∂z which
is representative of the total velocity divergence since the remaining contribution
corresponding to ∂u/∂x turns out to be small in comparison with the other derivatives.
Note that compressibility effects associated with local expansion or compression are
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Figure 25. Heated duct LES at Th/Tw = 2.5: (a) and (c) mean conditioned transversal vector field
(one half and one quarter of the duct cross-section respectively); (b) mean transversal vector field
(one quarter of the duct cross-section).

important since the maximum and the minimum of (∇ · u)p in the selected planes
are approximately 1.19Ub/Dh and −1.05Ub/Dh. As already noticed on figures 22
and 23, the maximum of ejection activity, in the middle plane, is situated around
y/Dh ≈ 0.3. This flow region clearly separates two flow regimes: a region of flow
convergence with positive (∇ ·u)p for y . 0.28Dh and a region of flow divergence with
negative (∇ · u)p for y & 0.28Dh. As shown in figure 20, at the foot of the ejection,
the rise of the hot fluid from the heated wall induces an entrainment of the colder
fluid from the duct core towards the hot wall. This engulfment mechanism can be
observed both with the conditionally averaged temperature field shown in figure 26
and with the instantaneous visualization of the temperature fluctuations associated
with a single ejection event displayed in figure 27. This last figure clearly shows that
cold fluid, corresponding to T ′(x, t) < 0 (T ′(x, t) = T (x, t)−〈T 〉(y, z)), accumulates at
the bottom of the ejection where it expands and generates a strong flow divergence.
This constitutes an amplification mechanism for the ejection process. This expansion
is mainly directed towards the vertical direction with the main contribution coming
from positive ∂v/∂y (see figure 26). The lateral expansion is indeed limited by the
laterally converging fluid associated with the secondary flow and marked by the
negative value of ∂w/∂z on the border of the expanding region. Conversely, at
the top of the ejection, the hot fluid extracted from the wall reaches colder flow
regions and then tends to undergo a significant compression. This compression is
bordered by laterally diverging fluid indicated by the regions of positive ∂w/∂z (see
figure 26). Finally, we investigated the effects associated with vorticity generation
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Figure 26. Conditionally averaged statistics. (a) ∂w/∂z, step 0.05(Ub/Dh); (b) ∂v/∂y, step
0.05(Ub/Dh); (c) divergence of the velocity projected on the cross-section (∇ · u)p, step 0.05(Ub/Dh);
and (d ) mean temperature, step 0.1Tw . Positive values (——–) and negative values (— —).

associated with baroclinic effects: we were unable to clearly identify regions of the
ejections dominated by these effects.

8. Conclusion
We have performed large-eddy simulations (LES) of the three-dimensional com-

pressible Navier–Stokes equations to study the turbulent flow within a duct of
square cross-section. We have successively considered a non-heated duct for which
a given temperature is prescribed at the four walls and a heated duct for which a
higher temperature is imposed at one of the walls. The low Mach number of our
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Figure 27. Fluctuating velocity vector field and fluctuating temperature isosurfaces
T ′(x, t) = 0.3Tw (dark) and T ′(x, t) = −0.3Tw (light).

computations has allowed a precise comparison with the previous DNS and LES
incompressible results. We have centred our comparisons on Gavrilakis’ (1992) DNS.
A very good concordance with the DNS results was achieved by the LES. The LES
turn out to be able to correctly reproduce both the statistical quantities and the
turbulent structures embedded within the flow. One of the characteristics of the duct
flow is the presence of secondary flows perpendicular to the mean longitudinal flow
whose intensity is weak compared with the latter (1–2% of the bulk velocity). The
LES, which are performed at a significantly reduced cost compared with the DNS,
perfectly reproduce the intensity of these weak secondary flows. Note that statistical
one-point closure models have to be elaborated to achieve such a good statistical
description. We have performed a detailed investigation of the flow anisotropy which
reveals that, near the duct central plane, the flow anisotropy is qualitatively similar to
the classical turbulent channel flow or the turbulent boundary layer with periodicity
along the spanwise direction. Away from this central plane, we have investigated in
detail how the flow anisotropy is modified by the presence of the lateral wall.

When the asymmetrical heating is applied, significant modifications of the flow
characteristics have been observed. The secondary flows located near the heated wall
are enhanced both in size and intensity. The increase of the viscosity near the heated
wall plays a major rôle. Near the heated wall, the turbulence was strongly reduced
due to the enhanced viscosity effects in this flow region. The viscous thickness near the
heated wall was found to be significantly enhanced compared with the heated case. All
the characteristic structures of the classical boundary layer, such as the low- and high-
speed streaks, the associated ejections and the associated quasi-longitudinal vortices
are observed in both the non-heated and the heated ducts. These flow structures seem
to be similar in nature and origin for both the non-heated case and the heated case.
Indeed, although a slight increase is noticed when heating is applied, the spanwise
wavelength of the streaks remains close to the classical value of ≈ 100 viscous units for
most of the investigated cases. Associated with the low-speed streaks, strong ejections
take place: the maximum of the ejection activity occurs around y+ ≈ 40 as indicated
by the minimum in the second quadrant of the 〈u′v′〉 component of the Reynolds stress.
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Since the heating yields an augmentation of the viscous thickness, the size of the
turbulent structures (streaks, ejections) is actually significantly larger with increased
heating compared with the duct characteristic size such as its hydraulic diameter.
Consequently, for the strongest heating we have applied, a saturation of the spanwise
wavelength of the low- and high-speed streak system is observed near the heated
wall due to the limitation imposed by the duct width. For strong enough heating,
only one meandering low-speed streak may appear near the duct central plane
corresponding to slow and hot fluid ejected from the wall. The latter is surrounded
by two high-speed streaks corresponding to fast and cold fluid impinging on the wall.
The violent ejections associated with the central low-speed streak induce a lifting of
the vortex lines from the heated wall and their subsequent stretching gives rise to
quasi-longitudinal vorticity structures corresponding to the aligned legs of consecutive
hairpin shaped vortex lines. The longitudinal vorticity generated by this stretching
mechanism, when expressed in wall-units, is found to be larger in the heated duct:
this can be attributed to the enhanced size of the ejections which extend further away
from the wall in a region of faster fluid inducing a stronger longitudinal vorticity
generation by stretching.

Finally, a conditional statistical sampling of the strongest ejection events has
allowed us to investigate in detail the effects due to compressibility. We have shown
that the ejection process is amplified by the important fluid expansion taking place
at the bottom of the ejection: this is a consequence of the secondary flow associated
with the strong ejection which generates a convergence of the cold fluid from the
duct interior towards the hot wall where it expands.
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